BBS水木清华站∶精华区

发信人: mry (木日), 信区: Linux        
标  题: Beej's Guide to Network Programming 
发信站: BBS 水木清华站 (Tue Nov 16 19:31:29 1999) 
 
《Unix Network Programming》虽然经典,不过太长了 
初学者可以现读读这篇简单的,估计一天就差不多 
======================================================== 
 
http://www.ecst.csuchico.edu/~beej/guide/net/ 
                     Beej's Guide to Network Programming 
                           Using Internet Sockets 
                         Version 1.5.3 (01-Nov-1997) 
               [http://www.ecst.csuchico.edu/~beej/guide/net] 
---------------------------------------------------------------------------- 
 
Intro 
Hey! Socket programming got you down? Is this stuff just a little too 
difficult to figure out from the man pages? You want to do cool Internet 
programming, but you don't have time to wade through a gob of structs trying 
 
to figure out if you have to call bind() before you connect(), etc., etc. 
Well, guess what! I've already done this nasty business, and I'm dying to 
share the information with everyone! You've come to the right place. This 
document should give the average competent C programmer the edge s/he needs 
to get a grip on this networking noise. 
---------------------------------------------------------------------------- 
 
Audience 
This document has been written as a tutorial, not a reference. It is 
probably at its best when read by individuals who are just starting out with 
 
socket programming and are looking for a foothold. It is certainly not the 
complete guide to sockets programming, by any means. 
Hopefully, though, it'll be just enough for those man pages to start making 
sense... :-) 
---------------------------------------------------------------------------- 
 
Platform and Compiler 
Most of the code contained within this document was compiled on a Linux PC 
using Gnu's gcc compiler. It was also found to compile on HPUX using gcc. 
Note that every code snippet was not individually tested. 
---------------------------------------------------------------------------- 
 
Contents: 
   1 What is a socket? 
   2 Two Types of Internet Sockets 
   3 Low level Nonsense and Network Theory 
   4 structs--Know these, or aliens will destroy the planet! 
   5 Convert the Natives! 
   6 IP Addresses and How to Deal With Them 
   7 socket()--Get the File Descriptor! 
   8 bind()--What port am I on? 
   9 connect()--Hey, you! 
  10 listen()--Will somebody please call me? 
  11 accept()--"Thank you for calling port 3490." 
  12 send() and recv()--Talk to me, baby! 
  13 sendto() and recvfrom()--Talk to me, DGRAM-style 
  14 close() and shutdown()--Get outta my face! 
  15 getpeername()--Who are you? 
  16 gethostname()--Who am I? 
  17 DNS--You say "whitehouse.gov", I say "198.137.240.100" 
  18 Client-Server Background 
  19 A Simple Stream Server 
  20 A Simple Stream Client 
  21 Datagram Sockets 
  22 Blocking 
  23 select()--Synchronous I/O Multiplexing. Cool! 
  24 More references 
  25 Disclaimer and Call for Help 
---------------------------------------------------------------------------- 
 
1. What is a socket? 
You hear talk of "sockets" all the time, and perhaps you are wondering just 
what they are exactly. Well, they're this: a way to speak to other programs 
using standard Unix file descriptors. 
What? 
Ok--you may have heard some Unix hacker state, "Jeez, everything in Unix is 
a file!" What that person may have been talking about is the fact that when 
Unix programs do any sort of I/O, they do it by reading or writing to a file 
 
descriptor. A file descriptor is simply an integer associated with an open 
file. But (and here's the catch), that file can be a network connection, a 
FIFO, a pipe, a terminal, a real on-the-disk file, or just about anything 
else. Everything in Unix is a file! So when you want to communicate with 
another program over the Internet you're gonna do it through a file 
descriptor, you'd better believe it. 
"Where do I get this file descriptor for network communication, Mr. 
Smarty-Pants?" is probably the last question on your mind right now, but I'm 
 
going to answer it anyway: You make a call to the socket() system routine. 
It returns the socket descriptor, and you communicate through it using the 
specialized send() and recv() ("man send", "man recv") socket calls. 
"But, hey!" you might be exclaiming right about now. "If it's a file 
descriptor, why in the hell can't I just use the normal read() and write() 
calls to communicate through the socket?" The short answer is, "You can!" 
The longer answer is, "You can, but send() and recv() offer much greater 
control over your data transmission." 
What next? How about this: there are all kinds of sockets. There are DARPA 
Internet addresses (Internet Sockets), path names on a local node (Unix 
Sockets), CCITT X.25 addresses (X.25 Sockets that you can safely ignore), 
and probably many others depending on which Unix flavor you run. This 
document deals only with the first: Internet Sockets. 
---------------------------------------------------------------------------- 
 
2. Two Types of Internet Sockets 
What's this? There are two types of Internet sockets? Yes. Well, no. I'm 
lying. There are more, but I didn't want to scare you. I'm only going to 
talk about two types here. Except for this sentence, where I'm going to tell 
 
you that "Raw Sockets" are also very powerful and you should look them up. 
All right, already. What are the two types? One is "Stream Sockets"; the 
other is "Datagram Sockets", which may hereafter be referred to as 
"SOCK_STREAM" and "SOCK_DGRAM", respectively. Datagram sockets are sometimes 
 
called "connectionless sockets" (though they can be connect()'d if you 
really want. See connect(), below. 
Stream sockets are reliable two-way connected communication streams. If you 
output two items into the socket in the order "1, 2", they will arrive in 
the order "1, 2" at the opposite end. They will also be error free. Any 
errors you do encounter are figments of your own deranged mind, and are not 
to be discussed here. 
What uses stream sockets? Well, you may have heard of the telnet 
application, yes? It uses stream sockets. All the characters you type need 
to arrive in the same order you type them, right? Also, WWW browsers use the 
 
HTTP protocol which uses stream sockets to get pages. Indeed, if you telnet 
to a WWW site on port 80, and type "GET pagename", it'll dump the HTML back 
at you! 
How do stream sockets achieve this high level of data transmission quality? 
They use a protocol called "The Transmission Control Protocol", otherwise 
known as "TCP" (see RFC-793 for extremely detailed info on TCP.) TCP makes 
sure your data arrives sequentially and error-free. You may have heard "TCP" 
 
before as the better half of "TCP/IP" where "IP" stands for "Internet 
Protocol" (see RFC-791.) IP deals with Internet routing only. 
Cool. What about Datagram sockets? Why are they called connectionless? What 
is the deal, here, anyway? Why are they unreliable? Well, here are some 
facts: if you send a datagram, it may arrive. It may arrive out of order. If 
 
it arrives, the data within the packet will be error-free. 
Datagram sockets also use IP for routing, but they don't use TCP; they use 
the "User Datagram Protocol", or "UDP" (see RFC-768.) 
Why are they connectionless? Well, basically, it's because you don't have to 
 
maintain an open connection as you do with stream sockets. You just build a 
packet, slap an IP header on it with destination information, and send it 
out. No connection needed. They are generally used for packet-by-packet 
transfers of information. Sample applications: tftp, bootp, etc. 
"Enough!" you may scream. "How do these programs even work if datagrams 
might get lost?!" Well, my human friend, each has it's own protocol on top 
of UDP. For example, the tftp protocol says that for each packet that gets 
sent, the recipient has to send back a packet that says, "I got it!" (an 
"ACK" packet.) If the sender of the original packet gets no reply in, say, 
five seconds, he'll re-transmit the packet until he finally gets an ACK. 
This acknowledgment procedure is very important when implementing SOCK_DGRAM 
 
applications. 
---------------------------------------------------------------------------- 
 
3. Low level Nonsense and Network Theory 
Since I just mentioned layering of protocols, it's time to talk about how 
networks really work, and to show some examples of how SOCK_DGRAM packets 
are built. Practically, you can probably skip this section. It's good 
background, however. 
 [Encapsulated Protocols Image]  Hey, kids, it's time to learn about Data 
                                 Encapsulation! This is very very important. 
 
It's so important that you might just learn about it if you take the 
networks course here at Chico State ;-). Basically, it says this: a packet 
is born, the packet is wrapped ("encapsulated") in a header (and maybe 
footer) by the first protocol (say, the TFTP protocol), then the whole thing 
 
(TFTP header included) is encapsulated again by the next protocol (say, 
UDP), then again by the next (IP), then again by the final protocol on the 
hardware (physical) layer (say, Ethernet). 
When another computer receives the packet, the hardware strips the Ethernet 
header, the kernel strips the IP and UDP headers, the TFTP program strips 
the TFTP header, and it finally has the data. 
Now I can finally talk about the infamous Layered Network Model. This 
Network Model describes a system of network functionality that has many 
advantages over other models. For instance, you can write sockets programs 
that are exactly the same without caring how the data is physically 
transmitted (serial, thin Ethernet, AUI, whatever) because programs on lower 
 
levels deal with it for you. The actual network hardware and topology is 
transparent to the socket programmer. 
Without any further ado, I'll present the layers of the full-blown model. 
Remember this for network class exams: 
   * Application 
   * Presentation 
   * Session 
   * Transport 
   * Network 
   * Data Link 
   * Physical 
The Physical Layer is the hardware (serial, Ethernet, etc.). The Application 
 
Layer is just about as far from the physical layer as you can imagine--it's 
the place where users interact with the network. 
Now, this model is so general you could probably use it as an automobile 
repair guide if you really wanted to. A layered model more consistent with 
Unix might be: 
   * Application Layer (telnet, ftp, etc.) 
   * Host-to-Host Transport Layer (TCP, UDP) 
   * Internet Layer (IP and routing) 
   * Network Access Layer (was Network, Data Link, and Physical) 
At this point in time, you can probably see how these layers correspond to 
the encapsulation of the original data. 
See how much work there is in building a simple packet? Jeez! And you have 
to type in the packet headers yourself using "cat"! Just kidding. All you 
have to do for stream sockets is send() the data out. All you have to do for 
 
datagram sockets is encapsulate the packet in the method of your choosing 
and sendto() it out. The kernel builds the Transport Layer and Internet 
Layer on for you and the hardware does the Network Access Layer. Ah, modern 
technology. 
So ends our brief foray into network theory. Oh yes, I forgot to tell you 
everything I wanted to say about routing: nothing! That's right, I'm not 
going to talk about it at all. The router strips the packet to the IP 
header, consults its routing table, blah blah blah. Check out the IP RFC if 
you really really care. If you never learn about it, well, you'll live. 
---------------------------------------------------------------------------- 
 
4. structs 
Well, we're finally here. It's time to talk about programming. In this 
section, I'll cover various data types used by the sockets interface, since 
some of them are a real bitch to figure out. 
First the easy one: a socket descriptor. A socket descriptor is the 
following type: 
    int 
Just a regular int. 
Things get weird from here, so just read through and bear with me. Know 
this: there are two byte orderings: most significant byte (sometimes called 
an "octet") first, or least significant byte first. The former is called 
"Network Byte Order". Some machines store their numbers internally in 
Network Byte Order, some don't. When I say something has to be in NBO, you 
have to call a function (such as htons()) to change it from "Host Byte 
Order". If I don't say "NBO", then you must leave the value in Host Byte 
Order. 
My First Struct(TM)--struct sockaddr. This structure holds socket address 
information for many types of sockets: 
    struct sockaddr 
        unsigned short    sa_family;    /* address family, AF_xxx       */ 
        char              sa_data[14];  /* 14 bytes of protocol address */ 
    ; 
sa_family can be a variety of things, but it'll be "AF_INET" for everything 
we do in this document. sa_data contains a destination address and port 
number for the socket. This is rather unwieldy. 
To deal with struct sockaddr, programmers created a parallel structure: 
struct sockaddr_in ("in" for "Internet".) 
    struct sockaddr_in 
        short int          sin_family;  /* Address family               */ 
        unsigned short int sin_port;    /* Port number                  */ 
        struct in_addr     sin_addr;    /* Internet address             */ 
        unsigned char      sin_zero[8]; /* Same size as struct sockaddr */ 
    ; 
This structure makes it easy to reference elements of the socket address. 
Note that sin_zero (which is included to pad the structure to the length of 
a struct sockaddr) should be set to all zeros with the function bzero() or 
memset(). Also, and this is the important bit, a pointer to a 
struct sockaddr_in can be cast to a pointer to a struct sockaddr and 
vice-versa. So even though socket() wants a struct sockaddr *, you can still 
 
use a struct sockaddr_in and cast it at the last minute! Also, notice that 
sin_family corresponds to sa_family in a struct sockaddr and should be set 
to "AF_INET". Finally, the sin_port and sin_addr must be in Network Byte 
Order! 
"But," you object, "how can the entire structure, struct in_addr sin_addr, 
be in Network Byte Order?" This question requires careful examination of the 
 
structure struct in_addr, one of the worst unions alive: 
    /* Internet address (a structure for historical reasons) */ 
    struct in_addr 
        unsigned long s_addr; 
    ; 
Well, it used to be a union, but now those days seem to be gone. Good 
riddance. So if you have declared "ina" to be of type struct sockaddr_in, 
then "ina.sin_addr.s_addr" references the 4 byte IP address (in Network Byte 
 
Order). Note that even if your system still uses the God-awful union for 
struct in_addr, you can still reference the 4 byte IP address in exactly the 
 
same way as I did above (this due to #defines.) 
---------------------------------------------------------------------------- 
 
5. Convert the Natives! 
We've now been lead right into the next section. There's been too much talk 
about this Network to Host Byte Order conversion--now is the time for 
action! 
All righty. There are two types that you can convert: short (two bytes) and 
long (four bytes). These functions work for the unsigned variations as well. 
 
Say you want to convert a short from Host Byte Order to Network Byte Order. 
Start with "h" for "host", follow it with "to", then "n" for "network", and 
"s" for "short": h-to-n-s, or htons() (read: "Host to Network Short"). 
It's almost too easy... 
You can use every combination if "n", "h", "s", and "l" you want, not 
counting the really stupid ones. For example, there is NOT a stolh() ("Short 
 
to Long Host") function--not at this party, anyway. But there are: 
   * htons()--"Host to Network Short" 
   * htonl()--"Host to Network Long" 
   * ntohs()--"Network to Host Short" 
   * ntohl()--"Network to Host Long" 
Now, you may think you're wising up to this. You might think, "What do I do 
if I have to change byte order on a char?" Then you might think, "Uh, never 
mind." You might also think that since your 68000 machine already uses 
network byte order, you don't have to call htonl() on your IP addresses. You 
 
would be right, BUT if you try to port to a machine that has reverse network 
 
byte order, your program will fail. Be portable! This is a Unix world! 
Remember: put your bytes in Network Order before you put them on the 
network. 
A final point: why do sin_addr and sin_port need to be in Network Byte Order 
 
in a struct sockaddr_in, but sin_family does not? The answer: sin_addr and 
sin_port get encapsulated in the packet at the IP and UDP layers, 
respectively. Thus, they must be in Network Byte Order. However, the 
sin_family field is only used by the kernel to determine what type of 
address the structure contains, so it must be in Host Byte Order. Also, 
since sin_family does not get sent out on the network, it can be in Host 
Byte Order. 
---------------------------------------------------------------------------- 
 
6. IP Addresses and How to Deal With Them 
Fortunately for you, there are a bunch of functions that allow you to 
manipulate IP addresses. No need to figure them out by hand and stuff them 
in a long with the << operator. 
First, let's say you have a struct sockaddr_in ina, and you have an IP 
address "132.241.5.10" that you want to store into it. The function you want 
 
to use, inet_addr(), converts an IP address in numbers-and-dots notation 
into an unsigned long. The assignment can be made as follows: 
    ina.sin_addr.s_addr = inet_addr("132.241.5.10"); 
Notice that inet_addr() returns the address in Network Byte Order 
already--you don't have to call htonl(). Swell! 
Now, the above code snippet isn't very robust because there is no error 
checking. See, inet_addr() returns -1 on error. Remember binary numbers? 
(unsigned)-1 just happens to correspond to the IP address 255.255.255.255! 
That's the broadcast address! Wrongo. Remember to do your error checking 
properly. 
All right, now you can convert string IP addresses to longs. What about the 
other way around? What if you have a struct in_addr and you want to print it 
 
in numbers-and-dots notation? In this case, you'll want to use the function 
inet_ntoa() ("ntoa" means "network to ascii") like this: 
    printf("%s",inet_ntoa(ina.sin_addr)); 
That will print the IP address. Note that inet_ntoa() takes a struct in_addr 
 
as an argument, not a long. Also notice that it returns a pointer to a char. 
 
This points to a statically stored char array within inet_ntoa() so that 
each time you call inet_ntoa() it will overwrite the last IP address you 
asked for. For example: 
    char *a1, *a2; 
    . 
    . 
    a1 = inet_ntoa(ina1.sin_addr);  /* this is 198.92.129.1 */ 
    a2 = inet_ntoa(ina2.sin_addr);  /* this is 132.241.5.10 */ 
    printf("address 1: %s",a1); 
    printf("address 2: %s",a2); 
will print: 
    address 1: 132.241.5.10 
    address 2: 132.241.5.10 
If you need to save the address, strcpy() it to your own character array. 
That's all on this topic for now. Later, you'll learn to convert a string 
like "whitehouse.gov" into its corresponding IP address (see DNS, below.) 
---------------------------------------------------------------------------- 
 
7. socket()--Get the File Descriptor! 
I guess I can put it off no longer--I have to talk about the socket() system 
 
call. Here's the breakdown: 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    int socket(int domain, int type, int protocol); 
But what are these arguments? First, domain should be set to "AF_INET", just 
 
like in the struct sockaddr_in (above.) Next, the type argument tells the 
kernel what kind of socket this is: SOCK_STREAM or SOCK_DGRAM. Finally, just 
 
set protocol to "0". (Notes: there are many more domains than I've listed. 
There are many more types than I've listed. See the socket() man page. Also, 
 
there's a "better" way to get the protocol. See the getprotobyname() man 
page.) 
socket() simply returns to you a socket descriptor that you can use in later 
 
system calls, or -1 on error. The global variable errno is set to the 
error's value (see the perror() man page.) 
---------------------------------------------------------------------------- 
 
8. bind()--What port am I on? 
Once you have a socket, you might have to associate that socket with a port 
on your local machine. (This is commonly done if you're going to listen() 
for incoming connections on a specific port--MUDs do this when they tell you 
 
to "telnet to x.y.z port 6969".) If you're going to only be doing a 
connect(), this may be unnecessary. Read it anyway, just for kicks. 
Here is the synopsis for the bind() system call: 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    int bind(int sockfd, struct sockaddr *my_addr, int addrlen); 
sockfd is the socket file descriptor returned by socket(). my_addr is a 
pointer to a struct sockaddr that contains information about your address, 
namely, port and IP address. addrlen can be set to sizeof(struct sockaddr). 
Whew. That's a bit to absorb in one chunk. Let's have an example: 
    #include <string.h> 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    #define MYPORT 3490 
    main() 
        int sockfd; 
        struct sockaddr_in my_addr; 
        sockfd = socket(AF_INET, SOCK_STREAM, 0); /* do some error checking! 
 */ 
        my_addr.sin_family = AF_INET;     /* host byte order */ 
        my_addr.sin_port = htons(MYPORT); /* short, network byte order */ 
        my_addr.sin_addr.s_addr = inet_addr("132.241.5.10"); 
        bzero(&(my_addr.sin_zero), 8);    /* zero the rest of the struct */ 
        /* don't forget your error checking for bind(): */ 
        bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)); 
        . 
        . 
        . 
There are a few things to notice here. my_addr.sin_port is in Network Byte 
Order. So is my_addr.sin_addr.s_addr. Another thing to watch out for is that 
 
the header files might differ from system to system. To be sure, you should 
check your local man pages. 
Lastly, on the topic of bind(), I should mention that some of the process of 
 
getting your own IP address and/or port can can be automated: 
        my_addr.sin_port = 0; /* choose an unused port at random */ 
        my_addr.sin_addr.s_addr = INADDR_ANY;  /* use my IP address */ 
See, by setting my_addr.sin_port to zero, you are telling bind() to choose 
the port for you. Likewise, by setting my_addr.sin_addr.s_addr to 
INADDR_ANY, you are telling it to automatically fill in the IP address of 
the machine the process is running on. 
If you are into noticing little things, you might have seen that I didn't 
put INADDR_ANY into Network Byte Order! Naughty me. However, I have inside 
info: INADDR_ANY is really zero! Zero still has zero on bits even if you 
rearrange the bytes. However, purists will point out that there could be a 
parallel dimension where INADDR_ANY is, say, 12 and that my code won't work 
there. That's ok with me: 
        my_addr.sin_port = htons(0); /* choose an unused port at random */ 
        my_addr.sin_addr.s_addr = htonl(INADDR_ANY);  /* use my IP address * 

Now we're so portable you probably wouldn't believe it. I just wanted to 
point that out, since most of the code you come across won't bother running 
INADDR_ANY through htonl(). 
bind() also returns -1 on error and sets errno to the error's value. 
Another thing to watch out for when calling bind(): don't go underboard with 
 
your port numbers. All ports below 1024 are RESERVED! You can have any port 
number above that, right up to 65535 (provided they aren't already being 
used by another program.) 
One small extra final note about bind(): there are times when you won't 
absolutely have to call it. If you are connect()'ing to a remote machine and 
 
you don't care what your local port is (as is the case with telnet), you can 
 
simply call connect(), it'll check to see if the socket is unbound, and will 
 
bind() it to an unused local port. 
---------------------------------------------------------------------------- 
 
9. connect()--Hey, you! 
Let's just pretend for a few minutes that you're a telnet application. Your 
user commands you (just like in the movie TRON) to get a socket file 
descriptor. You comply and call socket(). Next, the user tells you to 
connect to "132.241.5.10" on port "23" (the standard telnet port.) Oh my 
God! What do you do now? 
Lucky for you, program, you're now perusing the section on connect()--how to 
 
connect to a remote host. You read furiously onward, not wanting to 
disappoint your user... 
The connect() call is as follows: 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    int connect(int sockfd, struct sockaddr *serv_addr, int addrlen); 
sockfd is our friendly neighborhood socket file descriptor, as returned by 
the socket() call, serv_addr is a struct sockaddr containing the destination 
 
port and IP address, and addrlen can be set to sizeof(struct sockaddr). 
Isn't this starting to make more sense? Let's have an example: 
    #include <string.h> 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    #define DEST_IP   "132.241.5.10" 
    #define DEST_PORT 23 
    main() 
        int sockfd; 
        struct sockaddr_in dest_addr;   /* will hold the destination addr */ 
 
        sockfd = socket(AF_INET, SOCK_STREAM, 0); /* do some error checking! 
 */ 
        dest_addr.sin_family = AF_INET;        /* host byte order */ 
        dest_addr.sin_port = htons(DEST_PORT); /* short, network byte order  
*/ 
        dest_addr.sin_addr.s_addr = inet_addr(DEST_IP); 
        bzero(&(dest_addr.sin_zero), 8);       /* zero the rest of the struc 
t */ 
        /* don't forget to error check the connect()! */ 
        connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockadd 
r)); 
        . 
        . 
        . 
Again, be sure to check the return value from connect()--it'll return -1 on 
error and set the variable errno. 
Also, notice that we didn't call bind(). Basically, we don't care about our 
local port number; we only care where we're going. The kernel will choose a 
local port for us, and the site we connect to will automatically get this 
information from us. No worries. 
---------------------------------------------------------------------------- 
 
10. listen()--Will somebody please call me? 
Ok, time for a change of pace. What if you don't want to connect to a remote 
 
host. Say, just for kicks, that you want to wait for incoming connections 
and handle them in some way. The process is two step: first you listen(), 
then you accept() (see below.) 
The listen call is fairly simple, but requires a bit of explanation: 
    int listen(int sockfd, int backlog); 
sockfd is the usual socket file descriptor from the socket() system call. 
backlog is the number of connections allowed on the incoming queue. What 
does that mean? Well, incoming connections are going to wait in this queue 
until you accept() them (see below) and this is the limit on how many can 
queue up. Most systems silently limit this number to about 20; you can 
probably get away with setting it to 5 or 10. 
Again, as per usual, listen() returns -1 and sets errno on error. 
Well, as you can probably imagine, we need to call bind() before we call 
listen() or the kernel will have us listening on a random port. Bleah! So if 
 
you're going to be listening for incoming connections, the sequence of 
system calls you'll make is: 
    socket(); 
    bind(); 
    listen(); 
    /* accept() goes here */ 
I'll just leave that in the place of sample code, since it's fairly 
self-explanatory. (The code in the accept() section, below, is more 
complete.) The really tricky part of this whole sha-bang is the call to 
accept(). 
---------------------------------------------------------------------------- 
 
11. accept()--"Thank you for calling port 3490." 
Get ready--the accept() call is kinda weird! What's going to happen is this: 
 
someone far far away will try to connect() to your machine on a port that 
you are listen()'ing on. Their connection will be queued up waiting to be 
accept()'ed. You call accept() and you tell it to get the pending 
connection. It'll return to you a brand new socket file descriptor to use 
for this single connection! That's right, suddenly you have two socket file 
descriptors for the price of one! The original one is still listening on 
your port and the newly created one is finally ready to send() and recv(). 
We're there! 
The call is as follows: 
     #include <sys/socket.h> 
     int accept(int sockfd, void *addr, int *addrlen); 
sockfd is the listen()'ing socket descriptor. Easy enough. addr will usually 
 
be a pointer to a local struct sockaddr_in. This is where the information 
about the incoming connection will go (and you can determine which host is 
calling you from which port). addrlen is a local integer variable that 
should be set to sizeof(struct sockaddr_in) before its address is passed to 
accept(). Accept will not put more than that many bytes into addr. If it 
puts fewer in, it'll change the value of addrlen to reflect that. 
Guess what? accept() returns -1 and sets errno if an error occurs. Betcha 
didn't figure that. 
Like before, this is a bunch to absorb in one chunk, so here's a sample code 
 
fragment for your perusal: 
    #include <string.h> 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    #define MYPORT 3490    /* the port users will be connecting to */ 
    #define BACKLOG 10     /* how many pending connections queue will hold * 

    main() 
        int sockfd, new_fd;  /* listen on sock_fd, new connection on new_fd  
*/ 
        struct sockaddr_in my_addr;    /* my address information */ 
        struct sockaddr_in their_addr; /* connector's address information */ 
 
        int sin_size; 
        sockfd = socket(AF_INET, SOCK_STREAM, 0); /* do some error checking! 
 */ 
        my_addr.sin_family = AF_INET;         /* host byte order */ 
        my_addr.sin_port = htons(MYPORT);     /* short, network byte order * 

        my_addr.sin_addr.s_addr = INADDR_ANY; /* auto-fill with my IP */ 
        bzero(&(my_addr.sin_zero), 8);        /* zero the rest of the struct 
 */ 
        /* don't forget your error checking for these calls: */ 
        bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)); 
        listen(sockfd, BACKLOG); 
        sin_size = sizeof(struct sockaddr_in); 
        new_fd = accept(sockfd, &their_addr, &sin_size); 
        . 
        . 
        . 
Again, note that we will use the socket descriptor new_fd for all send() and 
 
recv() calls. If you're only getting one single connection ever, you can 
close() the original sockfd in order to prevent more incoming connections on 
the same port, if you so desire. 
 
--------------------------------------------------------------------------- 

12. send() and recv()--Talk to me, baby! 
These two functions are for communicating over stream sockets or connected 
datagram sockets. If you want to use regular unconnected datagram sockets, 
you'll need to see the section on sendto() and recvfrom(), below. 
The send() call: 
    int send(int sockfd, const void *msg, int len, int flags); 
sockfd is the socket descriptor you want to send data to (whether it's the 
one returned by socket() or the one you got with accept().) msg is a pointer 
 
to the data you want to send, and len is the length of that data in bytes. 
Just set flags to 0. (See the send() man page for more information 
concerning flags.) 
Some sample code might be: 
    char *msg = "Beej was here!"; 
    int len, bytes_sent; 
    . 
    . 
    len = strlen(msg); 
    bytes_sent = send(sockfd, msg, len, 0); 
    . 
    . 
    . 
send() returns the number of bytes actually sent out--this might be less 
than the number you told it to send! See, sometimes you tell it to send a 
whole gob of data and it just can't handle it. It'll fire off as much of the 
 
data as it can, and trust you to send the rest later. Remember, if the value 
 
returned by send() doesn't match doesn't match the value in len, it's up to 
you to send the rest of the string. The good news is this: if the packet is 
small (less than 1K or so) it will probably manage to send the whole thing 
all in one go. Again, -1 is returned on error, and errno is set to the error 
 
number. 
The recv() call is similar in many respects: 
    int recv(int sockfd, void *buf, int len, unsigned int flags); 
sockfd is the socket descriptor to read from, buf is the buffer to read the 
information into, len is the maximum length of the buffer, and flags can 
again be set to 0. (See the recv() man page for flag information.) 
recv() returns the number of bytes actually read into the buffer, or -1 on 
error (with errno set, accordingly.) 
There, that was easy, wasn't it? You can now pass data back and forth on 
stream sockets! Whee! You're a Unix Network Programmer! 
---------------------------------------------------------------------------- 
 
13. sendto() and recvfrom()--Talk to me, DGRAM-style 
"This is all fine and dandy," I hear you saying, "but where does this leave 
me with unconnected datagram sockets?" No problemo, amigo. We have just the 
thing. 
Since datagram sockets aren't connected to a remote host, guess which piece 
of information we need to give before we send a packet? That's right! The 
destination address! Here's the scoop: 
    int sendto(int sockfd, const void *msg, int len, unsigned int flags, 
               const struct sockaddr *to, int tolen); 
As you can see, this call is basically the same as the call to send() with 
the addition of two other pieces of information. to is a pointer to a 
struct sockaddr (which you'll probably have as a struct sockaddr_in and cast 
 
it at the last minute) which contains the destination IP address and port. 
tolen can simply be set to sizeof(struct sockaddr). 
Just like with send(), sendto() returns the number of bytes actually sent 
(which, again, might be less than the number of bytes you told it to send!), 
 
or -1 on error. 
Equally similar are recv() and recvfrom(). The synopsis of recvfrom() is: 
    int recvfrom(int sockfd, void *buf, int len, unsigned int flags 
                 struct sockaddr *from, int *fromlen); 
Again, this is just like recv() with the addition of a couple fields. from 
is a pointer to a local struct sockaddr that will be filled with the IP 
address and port of the originating machine. fromlen is a pointer to a local 
 
int that should be initialized to sizeof(struct sockaddr). When the function 
 
returns, fromlen will contain the length of the address actually stored in 
from. 
recvfrom() returns the number of bytes received, or -1 on error (with errno 
set accordingly.) 
Remember, if you connect() a datagram socket, you can then simply use send() 
 
and recv() for all your transactions. The socket itself is still a datagram 
socket and the packets still use UDP, but the socket interface will 
automatically add the destination and source information for you. 
---------------------------------------------------------------------------- 
 
14. close() and shutdown()--Get outta my face! 
Whew! You've been send()'ing and recv()'ing data all day long, and you've 
had it. You're ready to close the connection on your socket descriptor. This 
 
is easy. You can just use the regular Unix file descriptor close() function: 
 
    close(sockfd); 
This will prevent any more reads and writes to the socket. Anyone attempting 
 
to read or write the socket on the remote end will receive an error. 
Just in case you want a little more control over how the socket closes, you 
can use the shutdown() function. It allows you to cut off communication in a 
 
certain direction, or both ways (just like close() does.) Synopsis: 
    int shutdown(int sockfd, int how); 
sockfd is the socket file descriptor you want to shutdown, and how is one of 
 
the following: 
   * 0 - Further receives are disallowed 
   * 1 - Further sends are disallowed 
   * 2 - Further sends and receives are disallowed (like close()) 
shutdown() returns 0 on success, and -1 on error (with errno set 
accordingly.) 
If you deign to use shutdown() on unconnected datagram sockets, it will 
simply make the socket unavailable for further send() and recv() calls 
(remember that you can use these if you connect() your datagram socket.) 
Nothing to it. 
---------------------------------------------------------------------------- 
 
15. getpeername()--Who are you? 
This function is so easy. 
It's so easy, I almost didn't give it it's own section. But here it is 
anyway. 
The function getpeername() will tell you who is at the other end of a 
connected stream socket. The synopsis: 
    #include <sys/socket.h> 
    int getpeername(int sockfd, struct sockaddr *addr, int *addrlen); 
sockfd is the descriptor of the connected stream socket, addr is a pointer 
to a struct sockaddr (or a struct sockaddr_in) that will hold the 
information about the other side of the connection, and addrlen is a pointer 
 
to an int, that should be initialized to sizeof(struct sockaddr). 
The function returns -1 on error and sets errno accordingly. 
Once you have their address, you can use inet_ntoa() or gethostbyaddr() to 
print or get more information. No, you can't get their login name. 
---------------------------------------------------------------------------- 
 
16. gethostname()--Who am I? 
Even easier than getpeername() is the function gethostname(). It returns the 
 
name of the computer that your program is running on. The name can then be 
used by gethostbyname(), below, to determine the IP address of your local 
machine. 
What could be more fun? I could think of a few things, but they don't 
pertain to socket programming. Anyway, here's the breakdown: 
    #include <unistd.h> 
    int gethostname(char *hostname, size_t size); 
The arguments are simple: hostname is a pointer to an array of chars that 
will contain the hostname upon the function's return, and size is the length 
 
in bytes of the hostname array. 
The function returns 0 on successful completion, and -1 on error, setting 
errno as usual. 
---------------------------------------------------------------------------- 
 
17. DNS--You say "whitehouse.gov", I say "198.137.240.100" 
In case you don't know what DNS is, it stands for "Domain Name Service". In 
a nutshell, you tell it what the human-readable address is for a site, and 
it'll give you the IP address (so you can use it with bind(), connect(), 
sendto(), or whatever you need it for.) This way, when someone enters: 
    $ telnet whitehouse.gov 
telnet can find out that it needs to connect() to "198.137.240.100". 
But how does it work? You'll be using the function gethostbyname(): 
    #include <netdb.h> 
    struct hostent *gethostbyname(const char *name); 
As you see, it returns a pointer to a struct hostent, the layout of which is 
 
as follows: 
    struct hostent 
        char    *h_name; 
        char    **h_aliases; 
        int     h_addrtype; 
        int     h_length; 
        char    **h_addr_list; 
    ; 
    #define h_addr h_addr_list[0] 
And here are the descriptions of the fields in the struct hostent: 
   * h_name - Official name of the host. 
   * h_aliases - A NULL-terminated array of alternate names for the host. 
   * h_addrtype - The type of address being returned; usually AF_INET. 
   * h_length - The length of the address in bytes. 
   * h_addr_list - A zero-terminated array of network addresses for the 
     host. Host addresses are in Network Byte Order. 
   * h_addr - The first address in h_addr_list. 
gethostbyname() returns a pointer to the filled struct hostent, or NULL on 
error. (But errno is not set--h_errno is set instead. See herror(), below.) 
But how is it used? Sometimes (as we find from reading computer manuals), 
just spewing the information at the reader is not enough. This function is 
certainly easier to use than it looks. 
Here's an example program: 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <errno.h> 
    #include <netdb.h> 
    #include <sys/types.h> 
    #include <netinet/in.h> 
    int main(int argc, char *argv[]) 
        struct hostent *h; 
        if (argc != 2)   /* error check the command line */ 
            fprintf(stderr,"usage: getip address"); 
            exit(1); 
        if ((h=gethostbyname(argv[1])) == NULL)   /* get the host info */ 
            herror("gethostbyname"); 
            exit(1); 
        printf("Host name  : %s", h->h_name); 
        printf("IP Address : %s",inet_ntoa(*((struct in_addr *)h->h_addr))); 
 
        return 0; 
With gethostbyname(), you can't use perror() to print error message (since 
errno is not used). Instead, call herror(). 
It's pretty straightforward. You simply pass the string that contains the 
machine name ("whitehouse.gov") to gethostbyname(), and then grab the 
information out of the returned struct hostent. 
The only possible weirdness might be in the printing of the IP address, 
above. h->h_addr is a char *, but inet_ntoa() wants a struct in_addr passed 
to it. So I cast h->h_addr to a struct in_addr *, then dereference it to get 
 
at the data. 
---------------------------------------------------------------------------- 
 
18. Client-Server Background 
It's a client-server world, baby. Just about everything on the network deals 
 
with client processes talking to server processes and vice-versa. Take 
telnet, for instance. When you connect to a remote host on port 24 with 
telnet (the client), a program on that host (called telnetd, the server) 
springs to life. It handles the incoming telnet connection, sets you up with 
 
a login prompt, etc. 
                        [Client-Server Relationship] 
                 Figure 2. The Client-Server Relationship. 
The exchange of information between client and server is summarized in 
Figure 2. 
Note that the client-server pair can speak SOCK_STREAM, SOCK_DGRAM, or 
anything else (as long as they're speaking the same thing.) Some good 
examples of client-server pairs are telnet/telnetd, ftp/ftpd, or 
bootp/bootpd. Every time you use ftp, there's a remote program, ftpd, that 
serves you. 
Often, there will only be one server on a machine, and that server will 
handle multiple clients using fork(). The basic routine is: server will wait 
 
for a connection, accept() it, and fork() a child process to handle it. This 
 
is what our sample server does in the next section. 
---------------------------------------------------------------------------- 
 
19. A Simple Stream Server 
All this server does is send the string "Hello, World!" out over a stream 
connection. All you need to do to test this server is run it in one window, 
and telnet to it from another with: 
    $ telnet remotehostname 3490 
where remotehostname is the name of the machine you're running it on. 
The server code: (Note: a trailing backslash on a line means that the line 
is continued on the next.) 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <errno.h> 
    #include <string.h> 
    #include <sys/types.h> 
    #include <netinet/in.h> 
    #include <sys/socket.h> 
    #include <sys/wait.h> 
    #define MYPORT 3490    /* the port users will be connecting to */ 
    #define BACKLOG 10     /* how many pending connections queue will hold * 

    main() 
        int sockfd, new_fd;  /* listen on sock_fd, new connection on new_fd  
*/ 
        struct sockaddr_in my_addr;    /* my address information */ 
        struct sockaddr_in their_addr; /* connector's address information */ 
 
        int sin_size; 
        if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
            perror("socket"); 
            exit(1); 
        my_addr.sin_family = AF_INET;         /* host byte order */ 
        my_addr.sin_port = htons(MYPORT);     /* short, network byte order * 

        my_addr.sin_addr.s_addr = INADDR_ANY; /* auto-fill with my IP */ 
        bzero(&(my_addr.sin_zero), 8);        /* zero the rest of the struct 
 */ 
        if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr 
)) \par                                                                      
  == -1) 
            perror("bind"); 
            exit(1); 
        if (listen(sockfd, BACKLOG) == -1) 
            perror("listen"); 
            exit(1); 
        while(1)   /* main accept() loop */ 
            sin_size = sizeof(struct sockaddr_in); 
            if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, \pa 
r                                                           &sin_size)) == - 
1) 
                perror("accept"); 
                continue; 
            printf("server: got connection from %s", \par                    
                             inet_ntoa(their_addr.sin_addr)); 
            if (!fork())  /* this is the child process */ 
                if (send(new_fd, "Hello, world!", 14, 0) == -1) 
                    perror("send"); 
                close(new_fd); 
                exit(0); 
            close(new_fd);  /* parent doesn't need this */ 
            while(waitpid(-1,NULL,WNOHANG) > 0); /* clean up child processes 
 */ 
In case you're curious, I have the code in one big main() function for (I 
feel) syntactic clarity. Feel free to split it into smaller functions if it 
makes you feel better. 
You can also get the string from this server by using the client listed in 
the next section. 
---------------------------------------------------------------------------- 
 
20. A Simple Stream Client 
This guy's even easier than the server. All this client does is connect to 
the host you specify on the command line, port 3490. It gets the string that 
 
the server sends. 
The client source: 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <errno.h> 
    #include <string.h> 
    #include <netdb.h> 
    #include <sys/types.h> 
    #include <netinet/in.h> 
    #include <sys/socket.h> 
    #define PORT 3490    /* the port client will be connecting to */ 
    #define MAXDATASIZE 100 /* max number of bytes we can get at once */ 
    int main(int argc, char *argv[]) 
        int sockfd, numbytes; 
        char buf[MAXDATASIZE]; 
        struct hostent *he; 
        struct sockaddr_in their_addr; /* connector's address information */ 
 
        if (argc != 2) 
            fprintf(stderr,"usage: client hostname"); 
            exit(1); 
        if ((he=gethostbyname(argv[1])) == NULL)   /* get the host info */ 
            herror("gethostbyname"); 
            exit(1); 
        if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
            perror("socket"); 
            exit(1); 
        their_addr.sin_family = AF_INET;      /* host byte order */ 
        their_addr.sin_port = htons(PORT);    /* short, network byte order * 

        their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
        bzero(&(their_addr.sin_zero), 8);     /* zero the rest of the struct 
 */ 
        if (connect(sockfd, (struct sockaddr *)&their_addr, \par             
                                   sizeof(struct sockaddr)) == -1) 
            perror("connect"); 
            exit(1); 
        if ((numbytes=recv(sockfd, buf, MAXDATASIZE, 0)) == -1) 
            perror("recv"); 
            exit(1); 
        buf[numbytes] = '\fs21 0'; 
        printf("Received: %s",buf); 
        close(sockfd); 
        return 0; 
Notice that if you don't run the server before you run the client, connect() 
 
returns "Connection refused". Very useful. 
---------------------------------------------------------------------------- 
 
21. Datagram Sockets 
I really don't have that much to talk about here, so I'll just present a 
couple of sample programs: talker.c and listener.c. 
listener sits on a machine waiting for an incoming packet on port 4950. 
talker sends a packet to that port, on the specified machine, that contains 
whatever the user enters on the command line. 
Here is the source for listener.c: 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <errno.h> 
    #include <string.h> 
    #include <sys/types.h> 
    #include <netinet/in.h> 
    #include <sys/socket.h> 
    #include <sys/wait.h> 
    #define MYPORT 4950    /* the port users will be connecting to */ 
    #define MAXBUFLEN 100 
    main() 
        int sockfd; 
        struct sockaddr_in my_addr;    /* my address information */ 
        struct sockaddr_in their_addr; /* connector's address information */ 
 
        int addr_len, numbytes; 
        char buf[MAXBUFLEN]; 
        if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) 
            perror("socket"); 
            exit(1); 
        my_addr.sin_family = AF_INET;         /* host byte order */ 
        my_addr.sin_port = htons(MYPORT);     /* short, network byte order * 

        my_addr.sin_addr.s_addr = INADDR_ANY; /* auto-fill with my IP */ 
        bzero(&(my_addr.sin_zero), 8);        /* zero the rest of the struct 
 */ 
        if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr 
)) \par                                                                      
   == -1) 
            perror("bind"); 
            exit(1); 
        addr_len = sizeof(struct sockaddr); 
        if ((numbytes=recvfrom(sockfd, buf, MAXBUFLEN, 0, \par               
              (struct sockaddr *)&their_addr, &addr_len)) == -1) 
            perror("recvfrom"); 
            exit(1); 
        printf("got packet from %s",inet_ntoa(their_addr.sin_addr)); 
        printf("packet is %d bytes long",numbytes); 
        buf[numbytes] = '\fs21 0'; 
        printf("packet contains "%s"",buf); 
        close(sockfd); 
Notice that in our call to socket() we're finally using SOCK_DGRAM. Also, 
note that there's no need to listen() or accept(). This is one of the perks 
of using unconnected datagram sockets! 
Next comes the source for talker.c: 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <errno.h> 
    #include <string.h> 
    #include <sys/types.h> 
    #include <netinet/in.h> 
    #include <netdb.h> 
    #include <sys/socket.h> 
    #include <sys/wait.h> 
    #define MYPORT 4950    /* the port users will be connecting to */ 
    int main(int argc, char *argv[]) 
        int sockfd; 
        struct sockaddr_in their_addr; /* connector's address information */ 
 
        struct hostent *he; 
        int numbytes; 
        if (argc != 3) 
            fprintf(stderr,"usage: talker hostname message"); 
            exit(1); 
        if ((he=gethostbyname(argv[1])) == NULL)   /* get the host info */ 
            herror("gethostbyname"); 
            exit(1); 
        if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) 
            perror("socket"); 
            exit(1); 
        their_addr.sin_family = AF_INET;      /* host byte order */ 
        their_addr.sin_port = htons(MYPORT);  /* short, network byte order * 

        their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
        bzero(&(their_addr.sin_zero), 8);     /* zero the rest of the struct 
 */ 
        if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0, \par       
        (struct sockaddr *)&their_addr, sizeof(struct sockaddr))) == -1) 
            perror("recvfrom"); 
            exit(1); 
        printf("sent %d bytes to %s",numbytes,inet_ntoa(their_addr.sin_addr) 
); 
        close(sockfd); 
        return 0; 
And that's all there is to it! Run listener on some machine, then run talker 
 
on another. Watch them communicate! Fun G-rated excitement for the entire 
nuclear family! 
Except for one more tiny detail that I've mentioned many times in the past: 
connected datagram sockets. I need to talk about this here, since we're in 
the datagram section of the document. Let's say that talker calls connect() 
and specifies the listener's address. From that point on, talker may only 
sent to and receive from the address specified by connect(). For this 
reason, you don't have to use sendto() and recvfrom(); you can simply use 
send() and recv(). 
---------------------------------------------------------------------------- 
 
22. Blocking 
Blocking. You've heard about it--now what the hell is it? In a nutshell, 
"block" is techie jargon for "sleep". You probably noticed that when you run 
 
listener, above, it just sits there until a packet arrives. What happened is 
 
that it called recvfrom(), there was no data, and so recvfrom() is said to 
"block" (that is, sleep there) until some data arrives. 
Lots of functions block. accept() blocks. All the recv*() functions block. 
The reason they can do this is because they're allowed to. When you first 
create the socket descriptor with socket(), the kernel sets it to blocking. 
If you don't want a socket to be blocking, you have to make a call to 
fcntl(): 
    #include <unistd.h> 
    #include <fcntl.h> 
    . 
    . 
    sockfd = socket(AF_INET, SOCK_STREAM, 0); 
    fcntl(sockfd, F_SETFL, O_NONBLOCK); 
    . 
    . 
By setting a socket to non-blocking, you can effectively "poll" the socket 
for information. If you try to read from a non-blocking socket and there's 
no data there, it's not allowed to block--it will return -1 and errno will 
be set to EWOULDBLOCK. 
Generally speaking, however, this type of polling is a bad idea. If you put 
your program in a busy-wait looking for data on the socket, you'll suck up 
CPU time like it was going out of style. A more elegant solution for 
checking to see if there's data waiting to be read comes in the following 
section on select(). 
---------------------------------------------------------------------------- 
 
23. select()--Synchronous I/O Multiplexing 
This function is somewhat strange, but it's very useful. Take the following 
situation: you are a server and you want to listen for incoming connections 
as well as keep reading from the connections you already have. 
No problem, you say, just an accept() and a couple of recv()s. Not so fast, 
buster! What if you're blocking on an accept() call? How are you going to 
recv() data at the same time? "Use non-blocking sockets!" No way! You don't 
want to be a CPU hog. What, then? 
select() gives you the power to monitor several sockets at the same time. 
It'll tell you which ones are ready for reading, which are ready for 
writing, and which sockets have raised exceptions, if you really want to 
know that. 
Without any further ado, I'll offer the synopsis of select(): 
       #include <sys/time.h> 
       #include <sys/types.h> 
       #include <unistd.h> 
       int select(int numfds, fd_set *readfds, fd_set *writefds, 
                  fd_set *exceptfds, struct timeval *timeout); 
The function monitors "sets" of file descriptors; in particular readfds, 
writefds, and exceptfds. If you want to see if you can read from standard 
input and some socket descriptor, sockfd, just add the file descriptors 0 
and sockfd to the set readfds. The parameter numfds should be set to the 
values of the highest file descriptor plus one. In this example, it should 
be set to sockfd+1, since it is assuredly higher than standard input (0). 
When select() returns, readfds will be modified to reflect which of the file 
 
descriptors you selected is ready for reading. You can test them with the 
macro FD_ISSET(), below. 
Before progressing much further, I'll talk about how to manipulate these 
sets. Each set is of the type fd_set. The following macros operate on this 
type: 
   * FD_ZERO(fd_set *set) - clears a file descriptor set 
   * FD_SET(int fd, fd_set *set) - adds fd to the set 
   * FD_CLR(int fd, fd_set *set) - removes fd from the set 
   * FD_ISSET(int fd, fd_set *set) - tests to see if fd is in the set 
Finally, what is this weirded out struct timeval? Well, sometimes you don't 
want to wait forever for someone to send you some data. Maybe every 96 
seconds you want to print "Still Going..." to the terminal even though 
nothing has happened. This time structure allows you to specify a timeout 
period. If the time is exceeded and select() still hasn't found any ready 
file descriptors, it'll return so you can continue processing. 
The struct timeval has the follow fields: 
    struct timeval 
        int tv_sec;     /* seconds */ 
        int tv_usec;    /* microseconds */ 
    ; 
Just set tv_sec to the number of seconds to wait, and set tv_usec to the 
number of microseconds to wait. Yes, that's microseconds, not milliseconds. 
There are 1,000 microseconds in a millisecond, and 1,000 milliseconds in a 
second. Thus, there are 1,000,000 microseconds in a second. Why is it 
"usec"? The "u" is supposed to look like the Greek letter Mu that we use for 
 
"micro". Also, when the function returns, timeout might be updated to show 
the time still remaining. This depends on what flavor of Unix you're 
running. 
Yay! We have a microsecond resolution timer! Well, don't count on it. 
Standard Unix timeslice is 100 milliseconds, so you'll probably have to wait 
 
at least that long, no matter how small you set your struct timeval. 
Other things of interest: If you set the fields in your struct timeval to 0, 
 
select() will timeout immediately, effectively polling all the file 
descriptors in your sets. If you set the parameter timeout to NULL, it will 
never timeout, and will wait until the first file descriptor is ready. 
Finally, if you don't care about waiting for a certain set, you can just set 
 
it to NULL in the call to select(). 
The following code snippet waits 2.5 seconds for something to appear on 
standard input: 
       #include <sys/time.h> 
       #include <sys/types.h> 
       #include <unistd.h> 
       #define STDIN 0  /* file descriptor for standard input */ 
       main() 
           struct timeval tv; 
           fd_set readfds; 
           tv.tv_sec = 2; 
           tv.tv_usec = 500000; 
           FD_ZERO(&readfds); 
           FD_SET(STDIN, &readfds); 
           /* don't care about writefds and exceptfds: */ 
           select(STDIN+1, &readfds, NULL, NULL, &tv); 
           if (FD_ISSET(STDIN, &readfds)) 
               printf("A key was pressed!"); 
           else 
               printf("Timed out."); 
If you're on a line buffered terminal, the key you hit should be RETURN or 
it will time out anyway. 
One final note of interest about select(): if you have a socket that is 
listen()'ing, you can check to see if there is a new connection by putting 
that socket's file descriptor in the readfds set. 
And that, my friends, is a quick overview of the almighty select() function. 
 
---------------------------------------------------------------------------- 
 
24. More References 
You've come this far, and now you're screaming for more! Where else can you 
go to learn more about all this stuff? 
Try the following man pages, for starters: 
   * socket() 
   * bind() 
   * connect() 
   * listen() 
   * accept() 
   * send() 
   * recv() 
   * sendto() 
   * recvfrom() 
   * close() 
   * shutdown() 
   * getpeername() 
   * getsockname() 
   * gethostbyname() 
   * gethostbyaddr() 
   * getprotobyname() 
   * fcntl() 
   * select() 
   * perror() 
Also, look up the following books: 
     Internetworking with TCP/IP, volumes I-III by Douglas E. Comer and 
     David L. Stevens. Published by Prentice Hall. Second edition ISBNs: 
     0-13-468505-9, 0-13-472242-6, 0-13-474222-2. There is a third edition 
     of this set which covers IPv6 and IP over ATM. 
     Using C on the UNIX System by David A. Curry. Published by O'Reilly & 
     Associates, Inc. ISBN 0-937175-23-4. 
     TCP/IP Network Administration by Craig Hunt. Published by O'Reilly & 
     Associates, Inc. ISBN 0-937175-82-X. 
     TCP/IP Illustrated, volumes 1-3 by W. Richard Stevens and Gary R. 
     Wright. Published by Addison Wesley. ISBNs: 0-201-63346-9, 
     0-201-63354-X, 0-201-63495-3. 
     Unix Network Programming by W. Richard Stevens. Published by Prentice 
     Hall. ISBN 0-13-949876-1. 
On the web: 
     BSD Sockets: A Quick And Dirty Primer 
     (http://sci173x.mrs.umn.edu/~bentlema/unix/sockets.html) 
     Client-Server Computing 
     (http://pandonia.canberra.edu.au/ClientServer/socket.html) 
     Intro to TCP/IP (gopher) 
     (gopher://gopher-chem.ucdavis.edu/11/Index/Internet_aw/Intro_the_Intern 
et/intro.to.ip/) 
     Internet Protocol Frequently Asked Questions (France) 
     (http://web.cnam.fr/Network/TCP-IP/) 
     The Unix Socket FAQ 
     (http://www.auroraonline.com/sock-faq/) 
RFCs--the real dirt: 
     RFC-768 -- The User Datagram Protocol (UDP) 
     (ftp://nic.ddn.mil/rfc/rfc768.txt) 
     RFC-791 -- The Internet Protocol (IP) 
     (ftp://nic.ddn.mil/rfc/rfc791.txt) 
     RFC-793 -- The Transmission Control Protocol (TCP) 
     (ftp://nic.ddn.mil/rfc/rfc793.txt) 
     RFC-854 -- The Telnet Protocol 
     (ftp://nic.ddn.mil/rfc/rfc854.txt) 
     RFC-951 -- The Bootstrap Protocol (BOOTP) 
     (ftp://nic.ddn.mil/rfc/rfc951.txt) 
     RFC-1350 -- The Trivial File Transfer Protocol (TFTP) 
     (ftp://nic.ddn.mil/rfc/rfc1350.txt) 
---------------------------------------------------------------------------- 
 
25. Disclaimer and Call for Help 
Well, that's the lot of it. Hopefully at least some of the information 
contained within this document has been remotely accurate and I sincerely 
hope there aren't any glaring errors. Well, sure, there always are. 
So, if there are, that's tough for you. I'm sorry if any inaccuracies 
contained herein have caused you any grief, but you just can't hold me 
accountable. See, I don't stand behind a single word of this document, 
legally speaking. This is my warning to you: the whole thing could be a load 
 
of crap. 
But it's probably not. After all, I've spent many many hours messing with 
this stuff, and implemented several TCP/IP network utilities for Windows 
(including Telnet) as summer work. I'm not the sockets god; I'm just some 
guy. 
By the way, if anyone has any constructive (or destructive) criticism about 
this document, please send mail to beej@ecst.csuchico.edu and I'll try to 
make an effort to set the record straight. 
In case you're wondering why I did this, well, I did it for the money. Hah! 
No, really, I did it because a lot of people have asked me socket-related 
questions and when I tell them I've been thinking about putting together a 
socket page, they say, "cool!" Besides, I feel that all this hard-earned 
knowledge is going to waste if I can't share it with others. WWW just 
happens to be the perfect vehicle. I encourage others to provide similar 
information whenever possible. 
Enough of this--back to coding! ;-) 
---------------------------------------------------------------------------- 
 
Copyright * 1995, 1996 by Brian "Beej" Hall. This guide may be reprinted in 
any medium provided that its content is not altered, it is presented in its 
entirety, and this copyright notice remains intact. Contact 
beej@ecst.csuchico.edu for more information. 
 
 
-- 
 m     m          {~._.~}            | 
 mm   mm  r rr     ( Y )           --+--   \ | / 
 m m m m  rr      ()~*~()           /|\    - o - 
 m  m  m  r       (_)-(_)          / | \   / | \ 
 
※ 来源:·BBS 水木清华站 bbs.net.tsinghua.edu.cn·[FROM: 166.111.68.179] 

BBS水木清华站∶精华区